

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # AirQuant Docs
By Ashkan Pakzad https://ashkanpakzad.github.io

See /readme.md before reading this document regarding install, about and purpose.

This software primarily revolves around the library/AirQuant.m class. Every CT case will exist as a new AirQuant class object. When a case is loaded in, it is first initialised, performing a number of checks and short processes.
Currently there is only one method for taking airway measurements, the [FWHMesl method](https://doi.org/10.1117/12.595283). This first relies on the CT scan to be interpolated at right angles to the principle airway axis. For scientific reading on the concept, please see [K Quan et al.](https://doi.org/10.1117/12.2292306) on which this software is based.

As most of the code behind this software is in library/AirQuant.m it is recommended that you explore it in MATLAB by collapsing all code and expanding as necessary. Set code collapsing for each section MATLAB preferences.

Example use can also be found in [scripts/](../scripts/) and example data is in [data/](../data/).

	# Contents:
	
	[Data, Initialisation & Batching](/docs/basic.md) - prepping data and initialisation an AirQuant object.

	[PTKskel: Skeletonisation](/docs/skel.md) - Skeletonisation and the packaged algorithm.

	[CT Airway Interpolation](/docs/interp.md) - Interpolation of the CT along the airway principal axis.

	[FWHMesl method](/docs/fwhm.md) - Measuring the airway.

	[Tapering Metrics](/docs/taper.md) - Tapering metrics that can be generated.

	[Visualisation](/docs/vis.md) - Methods for visualising global data.

	[Segmental Visualisation](/docs/segvis.md) - Methods for visualising data for individual segments.

	[Future Ambitions](/docs/future.md) - watch this space.

 # Basic use

Preparing your data
Your data will need to be in Nifti format (.nii or .nii.gz) and read in using niftiread and niftiinfo. The airway segmentation should be one completely [26-connected](https://en.wikipedia.org/wiki/Pixel_connectivity) object, AQ takes the largest connected object and discards everything else in the segmentation.

It is recommended that the packaged skeletonisation algorithm is used PTKskel. The resultant skeleton of this algorithm is suited for use with AirQuant.

Initialisation
Setting up the AQ object for a case is straightforward. It requires loading up the CT, metadata, airway segmentation and skeleton from [NIFTI format](https://brainder.org/2012/09/23/the-nifti-file-format/). The metadata variable is the output from niftiinfo.

Inputs:
* Original CT
* niftiinfo() header information
* Airway Segmentation
* Airway Centreline/Skeleton*
* filename to save results

Output:
* AirQuant object class

Notes

Initialising the AQ class calls for the skeleton to be parsed into a directional-graph such that edges face from proximal to the distal direction. [see etc.] This forms the backbone of the AQ class that allows each airway segment to be individually analysed and processed. In addition nodes are bifurcation (or even trifurcation points).

Lobes are classified by examining the graph nodes and their relative position, e.g. the node at the end of the right major bronchi will be more right than the node at the end of the left major bronchi by definition. This is largely based on the method described by [Gu et al.](doi.org/10.1155/2012/382806) with the addition of classifying the Left lingular separately. This can be generated graphically, see [Visualisation](/docs/vis.md).

Each segment’s generation is identified by counting the number of nodes from the carina node to origin node of an airway segment. The carina node is first identified by a centrality metric of the first pass to convert the skeleton into a digraph.

All data is converted into LPS orientation (standard for DICOM) once AQ is initialised. So data inside the AQ object may not align with your raw data outside of AQ. It is necessary to declare an orientation within AQ, most CT data is stored in this orientation already. See [Understanding 3D medical image orientation for programmers](https://medium.com/@ashkanpakzad/understanding-3d-medical-image-orientation-for-programmers-fcf79c7beed0).

Functions that take longer to run often call the save method, saving the current object’s state to a “.mat” file as declared by the savename property.

For more information see library/AirQuant.m > methods > %%INITIALISATION > AirQuant.

Example
```
% names input files, give fullpaths if not in matlab path
% add AirQuant library to path
AirQuantDir = AirQuantAddPath();
casename = ‘github_demo’;
dataset = ‘example’
results_dir = fullfile(AirQuantDir,’results’,dataset, casename);

% Get filenames
CT_name = [casename, ‘_raw.nii.gz’];
seg_name = [casename, ‘_seg.nii.gz’];
skel_name = [casename, ‘_seg_PTKskel.nii.gz’];

% Load CT data as double
meta = niftiinfo(CT_name);
CT = double(niftiread(meta));

% Load Airway segmentation and its skeleton as logicals
S = logical(niftiread(seg_name));
skel = logical(niftiread(skel_name));

% Initialise AirQuant
% Parses CT, segmentation and skeleton to compute airway tree graph
% savename is given to automatically save/load results.
savename = fullfile(results_dir, [casename, ‘_AQ.mat’]);
AQ = AirQuant(CT, meta, S, skel, savename);
```
Reloading
Previously saved AirQuant objects can be reloaded by calling the AirQuant class with the savename/path only.

Example
```
% add AirQuant library to path
AirQuantDir = AirQuantAddPath();
dataset = ‘example’
casename = ‘github_demo’;
results_dir = fullfile(AirQuantDir,’results’, dataset, casename);

% Load AirQuant object
savename = fullfile(results_dir, [char(casename, ‘_AQ.mat’]);
AQ = AirQuant(savename);
```

Batch Processing
AirQuant comes packed with an extended batch function/script under library/runAQ.m.
This function is designed to run AirQuant on several cases by providing a configuration structure.
It will also run certain visualisation methods and save them to .fig and .png formats.
For alternative batch scripting, it is recommended that you use this function as a template.
An example configuration script can be found under scripts/example_config.m.

Notes

	This requires all data to be stored exactly within AirQuant/data/datasetname.

	The command line output of each case is saved in its own log file under AirQuant/data/datasetname/casename/casename_log.txt.

	If any of the CT, segmentation or skeletonisation datafiles do not exist, it will inform and skip but not throw an error. This is to prevent time wasted in extended jobs.

	If the AQ object already exists in results, it will not skip but instead reload and process it. The AQ traversing method regularly saves the AQ object. If the job is interrupted it just picks up from where it left off.

Example
```
AirQuantDir = AirQuantAddPath();

%%% set up the config structure
config = [];
% must be string array, using double dash quotes.
config.casenames = [“github_demo”]; % required
config.dataset = ‘example’;

% suffix of each file (these are defaults if not provided)
config.CTsuf = ‘_raw.nii.gz’;
config.segsuf= ‘_seg.nii.gz’;
config.skelsuf = ‘_seg_PTKskel.nii.gz’;

%%% pass to AirQuant runner
runAQ(config);

```


 wait for it….

 # FWHMesl method

This section will cover the methods of AirQuant that measures the airways in the interpolated airway slices by the [Full Width at Half Maximum Edge-cued Segmentation Limited method](https://doi.org/10.1117/12.595283). This is executed for the inner lumen wall edge, wall peak attenuation point and outer wall edge. It is strongly encouraged to read [K Quan et al.](https://doi.org/10.1117/12.2292306) on which this software is based. The two higher level functions are documented first, the lower level methods are mentioned to their purpose in a discussion of the theory below.

FindFWHMall(obj)
Ultimately this whole process can be called to be executed on all airways by calling this function.

This step should only take a few minutes. You may receive some warning signs and errors in its process, these can be largely ignored unless you see it occurring for pretty much every single airway.

All results are stored in the AQ object itself. See the lower level functions that are called by this method below for more information on each step.

Notes

This step effectively calls FindAirwayBoundariesFWHM to run on every airway branch except the trachea. If the user insists on running this function of the trachea, they can call this function explicitly with the trachea index.

The interpolation parameters are automatically derived from the CT Voxel Size and stored in the AQ object properties. The user can override these parameters by setting the properties themselves after initialisation and before running this method. num_rays and ray_interval. See the Theory section for more information.

Example
`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
FindFWHMall(AQ)
`

FindAirwayBoundariesFWHM(obj, link_index)
It is rare to request the interpolation for just one airway, but this function is available if so, it is intended as a lower level method that can be called by AirwayImageAll. It may be useful for testing an individual case and calling some segmental visualisations.

Unlike the interpolation methods, the AQ object is not saved at the end of processing of each one as this could be significantly slow. It is recommended that the user call the save function themselves if they are only processing measuremnts and not computing metrics in the same session.

`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
FindAirwayBoundariesFWHM(AQ, 41)
`

Theory
There are 3 listed steps to this process. The first two involve numerous loops of code but are very fast.

	Raycasting from centre outwards.

	Identifying stop points.

	Ellipse fitting.

The FWHMesl method in essence treats the 1D intesity profile across the wall as a bell shaped peak from which the inner edge is idenitified by the left [FWHM](https://en.wikipedia.org/wiki/Full_width_at_half_maximum) and the outer edge by the right FWHM. However, this profile can be noisy and is therefore made more robust by using information from the interpolated segmentation where the wall is expected to be near the edge of the segmentation. Note that the interpolated segmentation is no longer binary but is now continuous between [0, 1]. This figure illustrates how the method works to supplement the text.

![FWHMesl method figure](./fwhmesl.png)
(a) Interpolated CT showing showing raycast lines from centre where the 1D profile is captured. (b) the equivalent interpolated segmentation. (c) the 1D intensity of the CT showing the bell shape. (d) the 1D intensity of the segmentation along the same cast ray in the CT. L_B and W_B mark the lumen and wall boundary respectively. P_A marks the wall peak, also known as the peak attenuation point.

Raycasting and stop points.
The centre of the airway is identified by Return_centre_pt_image and confirmed by the segmentation too Check_centre_with_segmentation.

The rays are then cast by Raycast from this point outwards to get then 1D intensity profiles outwards from this point. The radial ray sampling is set by obj.ray_interval (0.2 degrees by default).

The FWHM method is executed on each individual pair of ray 1D intensity profiles by AirQuant.computeFWHM. This identifies the stop points for each of the inner wall, wall peak-attenuation and outer wall. The FWHMesl method identifies the peak closest to the segmentation image edge. The peak is then travelled downwards along the negative gradient until it plateaus on both sides; it computes the mid point between these trough points and the peak to get the width at half maximum. Hence the name.

Finally for each set of raycast stop points an ellipse is fit by ComputeEllipses in 2D. The results are saved in the private property obj.FWHMesl.

 # CT Airway interpolation

The key step to being able to measure the airways at perpendicular angles lay in interpolating the CT image and even the segmentation. This section will cover the methods of AirQuant that completes this step and give an idea of the concept behind them. Strongly encouraged to read [K Quan et al.](https://doi.org/10.1117/12.2292306) on which this software is based. The two higher level functions are documented first, the lower level methods are mentioned to their purpose in a discussion of the theory below.

AirwayImageAll(obj)
Ultimately this whole process can be called to be executed on all airways by calling this function. The time it takes can vary from case to case. Smaller voxel size, larger volume, larger airways, longer airways (larger subjects), more airways segmented can all cause this step to take longer.

It is recommended to execute this step on a high performance workstation or better yet a dedicated cluster. Ortherwise you may find that this process will take a long time (>24h) and easily run out of memory. On average, a case will take 6h (i7 processor, 32gb ram etc.).

All results are stored in the AQ object itself. See the lower level functions that are called by this method below for more information but each step.

Notes

This step effectively calls CreateAirwayImage to run on every airway branch except the trachea. If the user insists on running this function of the trachea, they can call this function explicitly with the trachea index.

The interpolation parameters are automatically derived from the CT Voxel Size and stored in the AQ object properties. The user can override these parameters by setting the properties themselves after initialisation and before running this method. max_plane_sz plane_sample_sz, spline_sample_sz, plane_scaling_sz, min_tube_sz. See the Theory section for more information.

Example
`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
AirwayImageAll(AQ)
`

CreateAirwayImage(obj, link_index)
It is rare to request the interpolation for just one airway, but this function is available if so, it is intended as a lower level method that can be called by AirwayImageAll. It may be useful for testing an individual case and calling some segmental visualisations.

Due to the fact that it can take a long time to process each airway, the AQ object is saved at the end of processing of each one by calling the save method.

`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
CreateAirwayImage(AQ, 41)
`

Theory
There are 5 listed steps to this process. Those concerning the spline are fast and those regarding the final interpolation step take much longer.

	Compute the spline of an individual airway.

	Identify interpolation sample points along the spline

	Identify the normal vector to each sample, i.e. tangent along the spline.

	Compute the plane of each sampled point.

	Interpolate the CT (and seg) to the computed plane (The most computationally expensive step).

Spline computation
A spline is fitted to the skelton points of an individual airway in order to interpolate the centreline continuously at subvoxel points. Tangental vectors along the spline at these sampled spline points will be at right angles to the airway.

ComputeSpline The skeleton points of the current airway and the parent (more central) airway are smoothed with a moving average filter, a spline is then fit to the current airway processed skeleton points only. The splines are stored in obj.Splines

ComputeSplinePoints will then identify the sample points at a set interval obj.spline_sample_sz (half the smallest voxel dimension by default). The spline parametrized sample points are also stored in obj.Splines at second column, however the corresponding arclength (length along the spline) points are stored in obj.arclength.

AirQuant.ComputeNormal MATLAB spline functions identify the real image point and the first derivative along the spline computes the normal.

Plane computation
InterpolateCT does the bulk of this step. The orthonormal vectors of the tangent are computed by the function Orthonormal_basis_with_tangent_vector and the plane grid at the sample point is generated by the function Grids_coords_for_plane.

The maximum plane size is set by obj.max_plane_sz (40mm x 40mm by default) and the in-plane sample rate is set by obj.plane_sample_sz (half the smallest voxel dimension by default).

AQ has the capability of adapting the actual plane size of a given point based on an indication of size by the airway segmentation. ComputeDmapD gets the value of the distance transform for a given CT point and the size of the plane is set by obj.plane_scaling_sz (5 by default) times this value. Note that the distance transform is only computed once and stored at obj.Dmap.

The interpolation of the segmentation and CT is carried out by the MALTAB interp3 function to populate the generated plane.

The interpolated CTs and segmentation images are stored in obj.TraversedImage and obj.TraversedSeg respectively .

 # Segmental Visualisation

These visualisation methods are intended for individual airway branches, hence the input argument link_index. Specify which branch to investigate by setting this value, it can be useful to see which airway corresponds to which by looking at the digraph first with plot(AQ).

h = PlotSplineVecs(obj, subsamp, link_index)
Plot the normal vectors along the spline points of a particular airway branch.
The current branch will appear in blue and neighboring airways in yellow for context.

link_index can be an individual airway or multiple provided in a single array. It will not be as detailed with a single airway if multiple are provided. If left blank, it will plot the splines of all airways which may take a while.

One can provide a subsamp value to indicate how often to sample the spline points. e.g. greater the number, the fewer sampled vectors will be shown.

This function requires the user to have directly or indirectly called the method ComputeSpline for all airways see [CT Airway Interpolation](/docs/interp.md).

Notes

It may become easier to interpret the resultant plot by increasing the subsamp value.

Caution: This method has not been robustly tested.

Example
`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
figure;
h = PlotSplineVecs(AQ, 2, 41)
`

![Example result of graph plot](./github_demo_splinevec.png)

PlotAirway3(obj, link_index)
Interactively scroll through the interpolated airway slices of a particular branch. The computed inner and outer airway wall edge are overlaid on top with further information shown at the top in the yellow bar. In slices where measurements failed, no overlay is shown.

This function requires airway measurements of link_index to first be processed, see [CT Airway Interpolation](/docs/interp.md) and [FWHMesl method](/docs/fwhm.md).

Example
`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
PlotAirway3(AQ, 41)
`

![Example result of graph plot](./github_demo_airway3.png)

s = OrthoViewAirway(obj, link_index)
Interactively view the interpolated airway slices of a particular branch.

Uses MATLAB’s built in orthosliceViewer. s the output is the slice viewer object see help orthosliceViewer for more information about it.

This function requires airway measurements of link_index to first be processed, see [CT Airway Interpolation](/docs/interp.md) and [FWHMesl method](/docs/fwhm.md).

Example
`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
s = OrthoViewAirway(AQ, 41)
`

![Example result of graph plot](./github_demo_ortho.png)

 # Skeletonisation

The airway skeleton/centreline should be true to the natural centreline of the airway and contain no loops such that it can be broken down into a tree object. AQ parses the skeleton into a network digraph allowing analysis on individual airway segments.

AQ will warn of any anomalies in the skeleton on initialisation and flag them on visualisation of the skeleton graph but make no effort to solve them.

A robust skeleton is necessary for successful analysis with AirQuant, to this end a suitable algorithm, [library/PTKskel] is packaged with AirQuant. Example use can also be found in [scripts/example_skel]

PTKskel
Provide the filename of the segmentation to be skeletonised. The result is saved in the same folder and the same name with an appended “_PTKskel”. The saved nifti file will be in alignment with the original segmentation file, allowing it to be used easily outside of PTK/AirQuant.

The PTK library requires that the input segmentation be in the MATLAB current folder.

Notes

This algorithm utilises the library of the [PulmonaryToolKit (PTK) by Tom Doel](https://github.com/tomdoel/pulmonarytoolkit) to skeletonise an already complete segmentation. Original PTK plugins only allows skeletonisation of airway segmentations complete by its own algorithm, this algorithm essentially calls PTK region growing algorithm to re-segment the airways using a propagating wavefront method originating from the trachea, this algorithm parses the airways at the same time. The resultant PTKairways object can then be passed to the PTKskeletonisation library to employ the algorithm based on [Palágyi et al.](doi.org/10.1016/j.compbiomed.2005.05.004). It also checks for loops and removes ‘offending’ skeleton branches.

AirQuant has methods to plot the segment and skeleton in one figure, see [Visualisation](/docs/vis.md).

Example
```
% must be in matlab current path
segname = ‘github_demo_seg.nii.gz’;
% Ensure all AirQuant files are in matlab path
AirQuantAddPath();

PTKskel(segname);
```


 # Tapering Metrics

One of the ultimate goals of this intense data processing is to measure the gradient of tapering of airways. There are two ‘schools of thought’ built into AirQuant so far. One we will call long tapering, this is where you can look at the gradient of tapering from the carina to the distal point of the outermost airways, the other we call segmental tapering, where we consider each airway graph edge a segment as an individual unit to measure.

Long Tapering

With this analysis we are looking at the tapering gradient from the carina to the most distal point of every airway end terminal. So we will have the same number of measurements as terminal airway end nodes (i.e nodes with one edge minus the top trachea node).

AllTaperResults = ComputeTaperAll(obj)

We have one high level function which will compute the tapering gradient of every long airway path for all three sets of airway measurements and store it in a table. This is done relatively fast and can be saved in a new variable which the user can export to csv, xlsx etc. if they wish. Furthermore, the table is also stored within the AQ property structure obj.Specs.

Notes

This method calls on ListTerminalNodes to get a list of terminal nodes and process each of them through ConstructTaperPath.

This is the measure that K Quan et al. considers and analysed extensively [Ref 1](https://doi.org/10.1117/12.2292306), [Ref 2](https://doi.org/10.1117/1.jmi.6.3.034003) and [Ref 3](http://arxiv.org/abs/1906.12225). Though their method is not exactly the same to process airway measurements.

Example

`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
AllTaperResults = ComputeTaperAll(AQ)
`

Segmental Tapering

This analysis is looking at the tapering of each individual airway branch as a single unit. Thus we will have the same number of measurements as there are branches minus the trachea branch. Specifically, there are two measures considered here Intratapering and Intertapering. The former considers percentage change in airway diameter along the segment relative to the first airway diameter measurement, the latter considers percentage change in average airway diameter relative to the previous segment.

SegmentTaperResults = SegmentTaperAll(obj, prunelength)

We have one high level function which will compute the tapering gradient of every branch for all three sets of airway measurements and store it in a table. This is done relatively fast and can be saved in a new variable which the user can export to csv, xlsx etc. if they wish. Furthermore, the table is also stored within the AQ property structure obj.Specs.

The second argument is optional and sets the length in mm to prune either end of the airway branches, it is a two element array. This is sometimes decided upon in order to avoid natural diameter changes due to bifurcations. For no pruning set the prunelength to [0 0].

Notes

This method calls on ComputeIntraTaper, ComputeIntraTaperAll and ComputeInterTaper.

This is a measure that [Kuo et al.](doi.org/10.1007/s00330-019-06606-w) considers extensively.

Example

`
% reloading processed AQ object.
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% call function
SegmentTaperResults = SegmentTaperAll(AQ, [0 0]])
`

 # Visualisation
AirQuant has a number of methods for visualising useful data. Often there are 3D visualisations where the airway segmentation is classified and 2D visualisations where the airway graph can be represented.

3D
PlotMap3D(obj, mode)
Visualise the airway segmentation in 3D and classify by either ‘lobe’ or ‘generation’ using MATLAB’s standard isosurface library.

Notes

In cases where the result may appear buggy, it is recommended that the user use View3D.

If the entire segmentation is not skeletonised properly i.e. the volume is not fully connected then those detached parts will most likely appear anomalous as they will be labelled by whichever lobe’s airways they are physically nearest to.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% classify by generation
figure;
PlotMap3D(AQ, 'generation');
% classify by lobes
figure;
PlotMap3D(AQ, 'lobe');
`

![Example result of generation plot](./github_demo_gen3d.png)
![Example result of lobe plot](./github_demo_lobe3d.png)

View3D(obj, mode)
An alternative to PlotMap3D, it uses MATLAB’s VolumeViewer to visualise and label the airways by generation and lobe. Accepted modes either ‘lobe’ or ‘generation’.

Notes

If possible, it is recommended that the user use PlotMap3D as it result in a better standard.

If the entire segmentation is not skeletonised properly i.e. the volume is not fully connected then those detached parts will most likely appear anomalous as they will be labelled by whichever lobe’s airways they are physically nearest to.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% classify by generation
PlotMap3D(AQ, 'generation');
% classify by lobes
figure;
PlotMap3D(AQ, 'lobe');
`

![Example result of view3d for generations](./github_demo_view3dgen.png)
![Example result of view3d for lobes](./github_demo_view3dlobe.png)

PlotSegSkel(obj)
plots the airway skeleton within a translucent faced segmentation. This can be useful to identify any problems with the skeleton if results appear suspicious.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% plot airways and skeleton
figure;
PlotSegSkel(AQ);
`

![Example result of segskel](./github_demo_skel3d.png)

Graph

plot(obj, type)
Plot the digraph as a tree structure and specify edge label type as either ‘index’, ‘lobes’, ‘generation’ or ‘none’. By default if the second param is not specified it will set the graph edges as the airway index number set within AirQuant.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% show digraph
figure;
plot(AQ);
`

![Example result of graph plot](./github_demo_graph.png)

PlotTree(obj)
Plot the skeleton with all graph information. Airways are numbered by their index.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% show tree plot
figure;
PlotTree(AQ);
`

![Example result of plot tree](./github_demo_tree.png)

PlotSplineTree(obj)
Plot all the splines that are fit to the airway skeleton. The colour of each spline is random, but useful for distinguishing.

This function requires the user to have directly or indirectly called the method ComputeSpline for all airways see [CT Airway Interpolation](/docs/interp.md).

Notes

This resultant plot may not align with other 3D objects due to the way in which spline data is stored in the AQ object at a fundamental level. This will be addressed in future releases.

Example
`
% after initialising object
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% show tree plot
figure;
PlotSplineTree(AQ);
`

![Example result of graph diameter plot](./github_demo_splinetree.png)

GraphPlotDiameter(obj)
Plot the airway digraph where edges line thickness correspond proportionally to the average diameter of each airway.

This function requires all airway measurements to first be processed, see [CT Airway Interpolation](/docs/interp.md) and [FWHMesl method](/docs/fwhm.md).

Example
`
% after initialising object and measuring all airways
savename = 'results/github_demo/github_demo_AQ.m'
AQ = AirQuant(savename);
% show average diameter plot
figure;
GraphPlotDiameter(AQ);
`

![Example result of graph diameter plot](./github_demo_avgd.png)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

